Nama : Irfan Hidayatulah Putra
NIM :20220140142
Kelas : B

let player;

let bullets = [];

let enemies = [J;

let spawnTimer = 0;
let score = 0;

let lives = 3;

let gameState = 'menu’; / 'menu’, 'playing’, 'gameover'

/I Sound variables
let shootSound; // external mp3 for shooting

let gameOverSound; // external wav for game over

/I Auto-fire
let autoFire = false;

let autoFireBtn; // p5 button element

/I Difficulty

let difficulties = {
‘Easy": { lives: 5, spawnRange: [50, 100], enemySpeedMul: 0.8, cooldownMax: 16 },
‘Normal': { lives: 3, spawnRange: [30, 80], enemySpeedMul: 1.0, cooldownMax: 12 },
‘Hard": { lives: 2, spawnRange: [15, 50], enemySpeedMul: 1.4, cooldownMax: 8 }

3

let difficultyNames = ['Easy’, 'Normal', 'Hard];

let selectedDifficulty = 'Normal';

/I menu box layout (calculated in setup)
let diffBox = {
x: 0,y: 0, w: 140, h: 48, spacing: 20

b

function preload() {
soundFormats(‘'mp3', ‘wav');
shootSound = loadSound('mixkit-game-gun-shot-1662.mp3',
0=>{
(err) => { console.warn('Gagal memuat suara tembakan:', err); }
)i

gameOverSound = loadSound('mixkit-explosion-hit-1704.wav',

0=>{
(err) => { console.warn(‘Gagal memuat suara gameover:', err); }
)
}

function setup() {
/I create canvas and Ul
let cnv = createCanvas(800, 600);
cnv.parent(document.body);

textAlign(CENTER, CENTER);

/I position difficulty boxes horizontally centered
let total W = difficultyNames.length * diffBox.w + (difficultyNames.length - 1) * diffBox.spacing;
diffBox.x = width / 2 - totalW / 2;

diffBox.y = height / 2 + 10;

player = new Player(width / 2, height - 40);

spawnTimer = 20;

/I Create Auto-Fire toggle button

autoFireBtn = createButton('Auto-Fire: OFF');
autoFireBtn.position(width - 130, 8);
autoFireBtn.style('padding’, '6px 8px’);
autoFireBtn.style(‘font-family’, ‘sans-serif');
autoFireBtn.mousePressed(toggleAutoFire);

autoFireBtn.attribute(‘aria-label’, 'Toggle auto fire');

/I Optional: show hint about key shortcut

let hint = createP("Tekan 'F' untuk toggle Auto-Fire | Gunakan «— — untuk pilih difficulty, ENTER untuk mulai");
hint.position(8, height + 8);

hint.style('margin’, '0px’);

hint.style(‘font-family’, ‘sans-serif');

hint.style(‘font-size', '12px’);

I apply initial difficulty (so Ul shows correct values)

applyDifficultySettings(selectedDifficulty);

function draw() {

background(30);

if (gameState === 'menu’) {

drawMenu();
return;

}

if (gameState === "playing’) {
/I --- INPUT handled per-frame so movement + shooting can occur simultaneously ---

handlelnput();

/I 1f autoFire is ON, request shoot every frame (player.shoot() respects cooldown)
if (autoFire) {
player.shoot();

}

/I spawn enemies (use difficulty spawn range, scale with score)
if (spawnTimer <= 0) {
enemies.push(new Enemy(random(20, width - 20), -20));
spawnTimer = getNextSpawnTimer();
Yelse {
spawnTimer--;

}

/I update player
player.update();

player.show();

/I update bullets

for (let i = bullets.length - 1; i >=0; i--) {
bullets[i].update();
bullets[i].show();
if (bullets[i].offscreen()) bullets.splice(i, 1);

}

/I update enemies
for (let i = enemies.length - 1; i >=0; i--) {
enemies[i].update();

enemiesi].show();

/I enemy hits bottom -> lose life

if (enemies[i].y - enemies[i].h/2 > height) {
enemies.splice(i, 1);
lives--;

if (lives <=0) {

triggerGameOver();
}

continue;

}

/I enemy collides with player
if (enemies[i].hitsPlayer(player)) {
enemies.splice(i, 1);
lives--;
if (lives <= 0) {
triggerGameOver();
}

continue;

/1 bullet collisions
for (let j = bullets.length - 1; j >= 0; j--) {
if (enemies[i] && bullets[j] && enemies]i].hitsBullet(bullets[j])) {
playExplosion(enemies[i].x, enemies[i].y);
enemies.splice(i, 1);
bullets.splice(j, 1);
score += 10,

break;

/I HUD
drawHUD();
} else if (gameState === "gameover’) {
drawGameOver();
}
}

function getNextSpawnTimer() {
/I calculates next spawn timer based on selected difficulty and score pressure
let cfg = difficulties[selectedDifficulty];
let minV = cfg.spawnRange[0];
let maxV = cfg.spawnRange[1];
/I scale down spawn times slowly as score increases
let scaleDown = floor(score / 50);

let minAdj = max(6, minV - scaleDown);

let maxAdj = max(minAdj + 6, maxV - floor(score / 30));
return int(random(minAdj, maxAdj));

}

function applyDifficultySettings(name) {
Il apply difficulty settings to global gameplay variables
let cfg = difficulties[name];
if (Icfg) cfg = difficulties'Normal'];
lives = cfg.lives;
/1 set player's cooldown max (so auto-fire / manual respect difficulty)
if (player) player.cooldownMax = cfg.cooldownMax;
/I spawnTimer initial
spawnTimer = getNextSpawnTimer();

}

function handlelnput() {

/I movement

if (keylsDown(LEFT_ARROW) || keylsDown(65)) { // LEFT or A
player.setDir(-1);

} else if (keylsDown(RIGHT_ARROW) || keylsDown(68)) { // RIGHT or D
player.setDir(1);

}else {
player.setDir(0);

}

/I shooting: tahan space untuk menembak sesuai cooldown
if (keylsDown(32)) { // SPACE
player.shoot();
}
}

function drawMenu() {
fill(255);
textSize(48);

text(‘Space Shoot', width / 2, height / 2 - 100);

textSize(16);
fill(200);

text('Pilih tingkat kesulitan: (klik kotak / gunakan «— — lalu ENTER)', width / 2, height / 2 - 60);

/I draw difficulty boxes

for (leti = 0; i < difficultyNames.length; i++) {

let name = difficultyNamesl[i];
let x = diffBox.x + i * (diffBox.w + diffBox.spacing);
let y = diffBox.y;
/I box background
if (name === selectedDifficulty) {
fill(255, 204, 0);
stroke(255);
strokeWeight(2);
Yelse {
fill(60);
noStroke();
}
rectMode(CORNER);

rect(x, y, diffBox.w, diffBox.h, 8);

11 label

noStroke();

fill(0);

if (name === selectedDifficulty) {
fill(20);

Yelse {
fill(220);

}

textSize(18);

text(name, x + diffBox.w / 2, y + diffBox.h / 2 - 6);

/I small details (lives / speed)

let cfg = difficulties[name];

textSize(12);

fill(name === selectedDifficulty ? 20 : 200);

text(Lives: ${cfg.lives}", x + diffBox.w / 2, y + diffBox.h / 2 + 10);

}

/I show controls hint

fill(200);

textSize(14);

text('A/« :kiri | D/— :kanan | SPACE : tembak', width /2, diffBox.y + diffBox.h + 36);

text("Tekan ENTER atau klik area kosong untuk mulai dengan pilihan saat ini.", width / 2, diffBox.y + diffBox.h + 56);

function drawHUD() {

fill(255);

textSize(14);
textAlign(LEFT, TOP);
text('Score: ' + score, 8, 8);

text('Lives: ' + lives, 8, 28);

/I show difficulty and auto-fire status top-right
textAlign(RIGHT, TOP);
let level = (1 + floor(score / 100));

text('Level: ' + level, width - 8, 8);

/I 'small indicator below Level

textSize(12);

textAlign(RIGHT, TOP);

text('Diff: ' + selectedDifficulty, width - 8, 28);

text(‘Auto-Fire: ' + (autoFire ? 'ON': 'OFF"), width - 8, 46);

textAlign(CENTER, CENTER);

}

function drawGameOver() {
fill(255, 80, 80);
textSize(64);
text(GAME OVER', width / 2, height / 2 - 60);
textSize(24);
fill(255);
text('Score: ' + score, width / 2, height/ 2);
textSize(16);
text(‘'Tekan R untuk main lagi', width / 2, height / 2 + 40);

text(‘'Tekan M untuk kembali ke menu', width / 2, height / 2 + 64);

/I Start / restart and mouse handling
function keyPressed() {
if (gameState === 'menu’) {
/I change selection by arrow keys
if (keyCode === LEFT_ARROW) {
changeSelection(-1);
} else if (keyCode === RIGHT_ARROW) {
changeSelection(1);
} else if (keyCode === ENTER) {
// start game with selected difficulty

if (typeof userStartAudio === "function’) userStartAudio();

startGame();
}
} else if (gameState === "playing’) {
/I F toggles auto-fire
if (key ==="'f'| key ==="F") {
toggleAutoFire();
}
/I R handled below for gameover but allow restart quickly
if (key ==="r'|| key ==="'R") {
restartGame();
}
} else if (gameState === "gameover’) {
if (key ===r'"|| key === "R") {
restartGame();
}
if (key ==='m'"|| key === "'M) {
/I back to menu
gameState = 'menu’;
/I reapply default selected difficulty Ul
applyDifficultySettings(selectedDifficulty);
}
/1 still allow toggling auto-fire from gameover screen
if (key ==="'f'|| key ==="F') toggleAutoFire();
}
}

function changeSelection(dir) {
let idx = difficultyNames.indexOf(selectedDifficulty);
idx = (idx + dir + difficultyNames.length) % difficultyNames.length;
selectedDifficulty = difficultyNames[idx];
/I update Ul/preview values

applyDifficultySettings(selectedDifficulty);

function mousePressed() {
if (gameState === 'menu’) {
/I check if clicked on any difficulty box
if (checkMenuClick(mouseX, mouseY)) {
/I click handled (selection changed) - do not start
return;
}

/I otherwise, start the game (click on empty area)

if (typeof userStartAudio === 'function’) userStartAudio();
startGame();

} else if (gameState === "playing’) {
/I mouse click shoots (still works while moving)
player.shoot();

} else if (gameState === "gameover’) {
/I click to restart quickly
restartGame();

}

}

function checkMenuClick(mx, my) {
for (leti = 0; i < difficultyNames.length; i++) {
let x = diffBox.x + i * (diffBox.w + diffBox.spacing);
lety = diffBox.y;
if (mx >= x && mx <= x + diffBox.w && my >=y && my <=y + diffBox.h) {
selectedDifficulty = difficultyNamesl[i];
applyDifficultySettings(selectedDifficulty);
return true;
}
}

return false;

function startGame() {
score = 0;
bullets = [1;
enemies = [];
/I set initial lives and cooldown based on selected difficulty
let cfg = difficulties[selectedDifficulty];
lives = cfg.lives;
if (player) player.cooldownMax = cfg.cooldownMax;
spawnTimer = getNextSpawnTimer();

gameState = 'playing’;

function restartGame() {
startGame();
gameState = 'playing’;

}

/I trigger game over once and play sound

function triggerGameOver() {
if (gameState !=="gameover') {
if (typeof userStartAudio === 'function’) {
try { userStartAudio(); } catch (e) {3}

}

gameState = 'gameover;
/I play game over sound once
if (gameOverSound && gameOverSound.isLoaded()) {
try {
gameOverSound.setVolume(1.0);
gameOverSound.play();
} catch (e) {3
}
}
}

/I Toggle function for Auto-Fire button and shortcut
function toggleAutoFire() {
autoFire = lautoFire;
if (autoFireBtn) {
autoFireBtn.html('Auto-Fire: ' + (autoFire ? 'ON": 'OFF");
/I small visual cue
if (autoFire) {
autoFireBtn.style('background-color', ‘#ffdd57");
Yelse {
autoFireBtn.style('background-color',);
}
}
}

/I --- Classes ---

class Player {
constructor(x, y) {

this.x = x;
this.,y =y;
this.w = 48;
this.h = 18;
this.speed = 6;
this.dir = 0;

this.cooldown = 0; // frames until next shot

this.cooldownMax = difficulties[selectedDifficulty].cooldownMax; // set by difficulty

}

setDir(d) {
this.dir =d;

}

update() {
this.x += this.dir * this.speed;
this.x = constrain(this.x, this.w / 2, width - this.w / 2);

if (this.cooldown > 0) this.cooldown--;

}

show() {
push();
translate(this.x, this.y);
noStroke();
fill(100, 200, 255);
rectMode(CENTER);
rect(0, 0, this.w, this.h, 6);
fill(20, 80, 140);
triangle(-12, -2, 12, -2, 0, -12);
pop();

}

shoot() {
if (this.cooldown === 0) {
bullets.push(new Bullet(this.x, this.y - this.h / 2 - 6));
if (shootSound && shootSound.isLoaded()) {
try {
let rate = random(0.95, 1.05);
shootSound.rate(rate);
shootSound.setVVolume(0.8);
shootSound.play();
} catch (e) {
try { shootSound.play(); } catch (e2) {}
}
}

this.cooldown = this.cooldownMax;

}

class Bullet {
constructor(x, y) {
this.x = X;
this.,y =y;
this.r = 5;

this.speed = 10;

update() {
this.y -= this.speed;

}

show() {
noStroke();
fill(255, 200, 50);
circle(this.x, this.y, this.r * 2);

}

offscreen() {
return this.y + this.r < 0;
}
}

class Enemy {
constructor(x, y) {

this.baseX = x;
this.x = x;
this.,y =y;
this.w = random(28, 48);
this.h = this.w * 0.6;
/I speed scales with score and difficulty
let cfg = difficulties[selectedDifficulty];
this.speed = random((1 + score / 200) * cfg.enemySpeedMul, (2 + score / 120) * cfg.enemySpeedMul);
this.osc = random(0.01, 0.05);

this.angle = random(TWO_PI);

update() {
this.y += this.speed;
this.angle += this.osc;

this.x = this.baseX + sin(this.angle) * 36;

show() {
push();
translate(this.x, this.y);
noStroke();
fill(200, 100, 120);
rectMode(CENTER);
rect(0, 0, this.w, this.h, 8);
fill(180, 50, 80);
triangle(-this.w * 0.4, this.h * 0.2, this.w * 0.4, this.h * 0.2, 0, this.h * 0.6);
pop();

}

hitsBullet(b) {
let dx = abs(b.x - this.x);
let dy = abs(b.y - this.y);
if (dx > (this.w / 2 + b.r)) return false;
if (dy > (this.h / 2 + b.r)) return false;

return true;

hitsPlayer(p) {
return !(p.x + p.w/2 < this.x - this.w/2 ||
p.X - p.w/2 > this.x + this.w/2 ||
p.y + p.h/2 < this.y - this.h/2 ||

p.y - p.h/2 > this.y + this.h/2);

/I simple explosion synth for enemy destruction
function playExplosion(x, y) {
try {

let osc = new p5.0scillator('sine’);
let env = new p5.Envelope();
env.setADSR(0.001, 0.05, 0.2, 0.1);
env.setRange(0.9, 0);
let baseFreq = random(120, 600);
osc.freq(baseFreq);
osc.amp(0);
osc.start();

osc.freq(baseFreq * random(0.8, 1.2));

env.play(osc);

setTimeout(() => { try { osc.stop(); } catch (e) {} }, 220);

} catch (e) {3

Space Shoot

Pilih tingkat kesulitan: (klik kotak / gunakan < — lalu ENTER)

Easy Normal
Lives: 5 Lives: 3

Al+— “kin | D/—kanan | SPACE :tembak

Tekan ENTER atau klik area kosong untuk mulai dengan pilinan saat ini.

Tekan 'F" untuk toggle Auto-Fire | Gunakan «— — untuk pilih difficulty, ENTER untuk mulai

Auto-Fire: OFF

score: 20 Auto-Fire: ON |iil
Lives: 2 lard

Auto-Fire: ON

Tekan 'F untuk toggle Auto-Fire | Gunakan «— — untuk pilin difficulty, ENTER untuk mulai

Auto-Fire: ON

Score: 30

Tekan R untuk main lagi
Tekan M untuk kembali ke menu

Tekan 'F' untuk toggle Auto-Fire | Gunakan «— — untuk pilih difficulty, ENTER untuk mulai

